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Abstract: On the basis of theoretical considerations, the technical note presents two practical formulas for the dimensioning of air valves
when filling a pipe with water. One is to be used for designing air valves on the basis of the maximum allowed water hammer
overpressures; the other when the maximum in pipe water velocity is set. The reliability of these formulas was tested with a numerical
model based on the same hypothesis, which was in turn verified with experimental tests.
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Introduction

The presence of air entrained by a liquid flow in a pipeline under
pressure often gives rise to operational problems in plant manage-
ment, either in the form of concentrated headloss due to section
reduction, or in the form of amplified overpressures in the case of
unsteady flow after plant operations like pump startup or stop.
Given these considerations, there is an evident need to insert air
sections in order to allow the air trapped inside the pipeline to
escape, and particular attention should be paid to the correct
dimensioning of the air release sections.

Various authors have studied the transient in pipes due to air
efflux �Benfratello 1957; De Martino et al. 1986� even with ex-
perimental comparisons �Gisonni 1998� and considering the re-
lated numerical problems �Roth and Nucera 1988�. Lingireddy
et al. �2004� studied the surges resulting from air release, paying
particular attention to their dimensions. While a number of em-
pirical formulas can be found in the literature, this technical note
is an attempt to provide simple practical formulas based on fun-
damental principles; it reports a theoretical study intended to de-
velop a method with which to design appropriate dimensions of
the air valves, after which laboratory tests were performed in
order to verify the correctness of the mathematical model. Prac-
tical formulas were derived and were checked by comparison
with numerical and experimental studies.

Basic Hypothesis

The basic hypothesis is that these processes are isentropic
�Mironer 1979; Whitaker 1968�. The process of air expulsion
through an air valve can be described by the polytropic equations
of ideal gases and the Bernoulli equation. The equation with
which to compute the sonic mass discharge m from a valve with
cross section Aair valve is

m = 0.685 · Cd · Aair valve ·
�atm

0.5

patm
0.357 · pin

0.857 �1�

In this equation p�pressure and ��air density; the subscript
atm�values at atmospheric pressure; subscript in�quantities in-
side the pipe; and Cd�coefficient of discharge. The ratio of spe-
cific heats has been implicitly set equal to 1.4, in accord with the
isentropic hypothesis.

Practical Formula—Condition on Maximum
Pressure

Complex models, which are still the best way to simulate net-
works, are not immediately applicable. As a consequence, a
simple formula is derived that allows the easy design of air valves
so that maximum pressure values can be acceptable for the given
pipe. If the valve diameter is too small, the time taken to fill the
pipe is too long. On the other hand, if the valve diameter is too
large, air efflux does not give enough resistance and, as a conse-
quence, the discharge in the pipe increases and the velocity be-
comes too high. At the end of the air efflux transient, this velocity
suddenly becomes zero, water stops when it collides with the
valve outlet, and this generates high water hammer pressures.

As is well known, the water hammer pressure �p due to un-
steady flow transient in the case of sudden closure of the valve
downstream is given by the Allievi–Joukowski equation and is
equal to

�p = c · �water · vwater = c · �water ·
Qin volume of water

Apipe
�2�

where c�water hammer wave velocity; �water�water density;
vwater�water velocity in the pipe; Qin volume of water�volume water
discharge; and Apipe�area of the pipe section.
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If it is required that the maximum water hammer pressure
value be limited to a fixed �p value, it is necessary for the dis-
charge in the pipe to be, as a maximum, equal to

Qin volume of water =
�p · Apipe

c · �water
�3�

If pmax�maximum pressure value in the pipe, the pipe must be
filled at a pressure equal to pfilling= pmax−�p, and, during the tran-
sient, the corresponding density �filling must be constant, i.e., the
following ratio must be constant

�filling =
Air mass in pipe

Available volume
�4�

and then

m = �filling · Qin volume of water �5�

Substituting Eq. �3� into Eq. �5�

m =
�p · Apipe · �filling

c · �water
�6�

and, taking into account the polytropic equation, we can obtain
the following

m =
Apipe · �atm

c · �water · patm
0.714 · pfilling

0.714 · �p �7�

and under sonic conditions �Eq. �1��

Aair valve =
Apipe

c · �water
·

1.46 · �atm
0.5

Cd · patm
0.357 · pfilling

−0.143 · �p �8�

Sonic conditions become established when pin�189 kPa, i.e., in
most practical cases.

On this hypothesis Eq. �8� can be written as

Dvalve = K · Dpipe · �Cd · c�−0.5 · pfilling
−0.072 · �p0.5 �9�

with K=5.128�10−3 m0.5 s−0.5 Pa0428

Eq. �9� is valid for single pipeline systems.

Practical Formula—Condition on Maximum Velocity

It is in some cases preferred to constrain the maximum velocity
vfilling when filling a pipe. In this case Eq. �2� becomes

�p = c · �water · vfilling �10�

so that Eq. �3� is now

Qin volume of water = vfilling · Apipe �11�

And substituting Eq. �11� into Eq. �5� yields

m = �filling · vfilling · Apipe �12�

Taking the polytropic equation into account, Eq. �12� becomes

m = �atm ·
pfilling

0.714

patm
0.714 · vfilling · Apipe �13�

and under sonic conditions �Eq. �1��

0.685 · Cd · Aair valve ·
�atm

0.5

patm
0.357 · pin

0.857 = �atm ·
pfilling

0.357

patm
0.357 · vfilling · Apipe

�14�

In this case, the equation for dimensioning air valves becomes

Dair valve = 9.886 · Cd−0.5 · pfilling
0.072 · vfilling

0.5 · Dpipe �15�

Eq. �15� is also valid only for single–pipeline systems.

Numerical Model to Validate Practical Formula

In order to validate the practical formula, simulations were per-
formed using a rigid–water–column numerical model similar to
that presented by Liou and Hunt �1996�. Different systems were
assumed. The maximum allowed pressure and pipe dimensions
were assigned to each of them, and the air valve dimensions were
computed with practical formula Eq. �9� �or Eq. �15� when re-
quired�. The systems were then simulated with the mathematical
model, assuming different dimensions of the air valve, and the
maximum allowable discharges were compared with those carried
out from the model.

For instance, suppose that a valve is being designed with a
maximum allowable overpressure �p=50 m, a filling pressure
pfilling=10 m, a pipe diameter D=5 cm, and a celerity
c=1,000 m/s. Eq. �9� gives Dvalve=2.23 mm. From the Allievi–
Joukowski equation it is evident that the maximum allowable
discharge is equal to 1 L/s.

Fig. 1 shows the results of the simulations for this case, as-
suming air diameters equal to 1, 2, 3, and 4 mm. Eq. �9� correctly
estimates the maximum Dvalve, because if Dvalve�2 mm then
higher velocities result, which imply higher water hammer pres-
sures. On the other hand, smaller Dvalve entails lower water ve-
locities, which imply more time to fill the pipe.

Laboratory Tests to Validate Complete Mathematical
Model

In order to verify the validity of the mathematical model used to
check the practical formula, a comparison was made between the
results obtained by the model itself and those acquired by a num-
ber of laboratory tests performed in the Laboratory of Hydraulics
of the Politecnico of Milan, Italy.

The laboratory system, as shown in Fig. 2, consisted of an iron
spiral pipe 90 m long, diameter equal to 52 mm, and Manning’s
roughness coefficient �measured in steady flow conditions� equal
to 0.009 m−1/3 s. The pipe was fed by a constant head tank posi-
tioned 5 m above the outfall, with an air valve positioned at its
end. Air was present in the duct from the beginning of each trial,
and it could be easily evacuated by the water entering through a

Fig. 1. Discharge versus time: simulation with different air valve
diameters and comparison with discharge associated with maximum
allowable overpressure
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valve which opened instantaneously. In the meantime, both the
values of the flow rate of the water entering the pipe and the air
pressure just before it escaped from the air valve itself were mea-
sured. A magnetic flow meter recorded the flow rate values, while
the air pressure values were measured with a metallic pressure
gauge.

Using Eq. �9�, for sonic flow, an optimal diameter of 2 mm
was obtained. The numeric simulations and the laboratory tests
carried out with the above-calculated air valve diameter gave
good results, examples of which are shown in Fig. 3 and 4.

We can conclude that the model agrees well with reality with
regard to both the flow rate and the pressure.

Conclusions

Given the operational problems due to the presence of air in the
pipes that may arise when a plant is being driven, a theoretical
study was conducted in order to determine a method for the op-
timization of air valve dimensions. The “optimal” dimensions are
those with which: �1� the time of air expulsion is shortest; and �2�
the allowable water hammer overpressures, generated when the
water column impacts with the opening of the air valves, is sat-
isfied. An alternative formulation, based on the maximum filling
velocity allowable, was also given.

A direct method was established for the dimensioning of the
air valves, the purpose being to determine the dimension of the
orifice, given the pipe diameter, the value of the suitable overpres-
sure in the pipe, the velocity of pressure wave in the system water
pipe, and the discharge coefficient of the orifice �Eq. �9��. The
alternative formula �Eq. �15�� allows determination of the dimen-
sion of the orifice given the pipe diameter, the value of the suit-
able velocity in the pipe, and the discharge coefficient of the
orifice. These can be considered valid formulas for a sonic air
flow: that is to say when, during the discharge, the pressure in the
duct exceeds or at least reaches the value of 1.89 atm, which is
what occurs in most real cases.

A complete mathematical model of the laboratory plant was
also developed, under the same hypothesis as the practical for-
mula. Laboratory tests were performed to verify the validity of
the mathematical model. The results of the numeric simulations
were confirmed: the diameter of the air valve calculated with the
practical formula was found to be the most suitable one; in par-
ticular, it was possible to verify that air valves dimensions smaller
than the dimension yielded by the practical formula extend the
time necessary for the air expulsion, while larger dimensions may
give rise to very high water hammer overpressures.

The experimental tests reproducing the theoretical model and
carried out with laboratory equipment confirm that the embraced
mathematical model well represent the real phenomenon from a
global point of view, so that it is possible to apply the accepted
practical formula in order to dimension the required air valves.

Notation

The following symbols are used in this technical note:
A � surface;

Cd � coefficient of discharge;
c � water hammer wave velocity;

D � diameter;
K � empirical constant;
m � air mass discharge;
p � pressure;
Q � water volume discharge;
v � velocity of flow; and
� � density.

Subscripts

atm � values at atmospheric pressure;
filling � quantities in pipe during filling transient;

in � quantities inside pipe;

Fig. 2. Three–dimensional schematic of laboratory model

Fig. 3. Comparison between numerical simulation and laboratory
test. Air valve diameter equal to 2.0 mm—pressure versus time.

Fig. 4. Comparison between numerical simulation and laboratory
test. Air valve diameter equal to 2.0 mm—discharge versus time.
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pipe � quantities related to pipe;
valve � quantities related to valve; and
water � quantities related to water.
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